Supporting Information: *Trackoscope*: A Low-Cost, Open, Autonomous Tracking Microscope for Long-Term Observations of Microscale Organisms

Priya Soneji¹, Elio J. Challita¹, M. Saad Bhamla²

1 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology

 ${f 2}$ School of Chemical and Biomolecular Engineering, Georgia Institute of Technology

*saadb@chbe.gatech.edu

Contents

Trackoscope Wir	ing Diagram	2
Trackoscope Pro	totype	3
Trackoscope Mov	vement Analysis Calculation	4
Customized Trac	ekoscope Prototype	5
Trackoscope Part	t List	6
Trackoscope Ass	embly Instructions	7

Trackoscope Wiring Diagram

Figure S1: **Circuit Diagram** Wiring diagram for *Trackoscope* detailing the connections between various components.

Trackoscope Prototype

Figure S2: The *Trackoscope* prototype. (A) CAD model of *Trackoscope* in the raised sample imaging setup. A white or contrasting covering is typically placed over the sample to create a clean background in the image. (B) *Trackoscope* is designed to be mass-produced and is constructed primarily out of laser-cut parts (acrylic or MDF) and minimal 3D printed components. It also uses standard metric nuts and bolts to join components together.

Trackoscope Movement Analysis Calculation. (A) $(\Delta x_{o/f}, \Delta y_{o/f})$ are calculated by taking the organism's location in the video frame at the start (is not always (0,0)) and finding the displacement within the frame, $\Delta x_{o/f}(\mu m) = (\Delta x_{o/f_{previous}} + (x_{o/f_{current}} - x_{o/f_{start}})) * C_{pixels to \mu m}$, with $C_{pixels to \mu m}$ depending on the magnification. (B) $(\Delta x_p, \Delta y_p)$ are calculated by adding up all platform displacements throughout the track; for instance, a single data point would be calculated with $\Delta x_p(\mu m) = \Delta x_{previous} + (\dot{x}_p * 50ms)$ where \dot{x} is the velocity of the axis on the platform.

Customized Trackoscope Prototype

Figure S4:

Customized *Trackoscope* **prototype**. (A) The single-build customized version of *Trackoscope* featuring a motorized Z-axis and a raised sample that is observed from below. This prototype has a tracking area of 625cm^2 (size of an A4 sheet) and is built using limited tools (hand saw, 3D-printer, and screw-drivers). (B) The physical custom digital microscope system used in both prototypes.

Part	Cost	
Arduino Uno + CNC Shield (i)	\$28.88	
NEMA 17 Stepper Motors (ii)	\$25.08	
Threaded Rods Set (iii)	\$56.58	
Belt + Pulley (iv)	\$21.98	
Legs (v)	\$9.99	
Leg Screws (vi)	\$3.20	Total Cost:
Coupling Nuts (vii)	\$6.35	\$423.54
3D Printed Parts (viii)	\$4	
MDF (ix)	\$5	Actuator Cost:
Objective Lens (x)	\$14.99	\$167.05
Achromatic Lens (xi)	\$110.36	
Ring Light (xii)	\$11.99	Optics Cost:
Raspberry Pi High Quality Camera (xiii)	\$50	\$256.49
Lens Tube (xiv)	\$29.03	
Raspberry Pi Zero (xv)	\$15	
Cage Plate (xvi)	\$21.11	
Fasteners (xvii)	\$10	
	1	

Trackoscope Part List

Table S1: The table lists the cost of *Trackoscope*. (i) a Shield Expansion Board V3.0 + R3 Board + A4988 Stepper Motor Driver + Heatsink, from kumantech.com, P/N K75; (ii) Nema 17 Bipolar 0.9deg 11Ncm (15.6oz.in) 1.2A 3.6V 42x42x21mm 4 Wires, from omc-stepperonline.com, P/N 17HM08-1204S; (iii) Mergorun 200mm Horizontal Optical Axis and 8mm Lead Screw Dual Rail Shaft Support Pillow Block Bearings and Flexible Shaft Coupling, from amazon.com, ASIN B06XPCY1LS; (iv) Houkr PGT2 Aluminum Timing Belt Idler Pulley Bearing 20and60 Teeth Width 8mm Born Synchronous Wheel, with a Perimeter 200mm Width 6mm Belt and a M4 Allen Wrench, from amazon.com, ASIN B081PXKKS4; (v) Antrader Pcs M10 Thread Adjustable Foot Cups Reinforced Nylon Base 48mm Diameter Articulated Feet Furniture Leg 80mm Leveling Foot, from amazon.com, P/N AZ18082701; (vi) 100mm Medium-Strength Metric Class 8.8 Steel Hex Head Screws, from mcmaster.com, P/N : 91280A198; (vii) Hitiland 5pcs Long Rod Nut Carbon Steel Hex Coupling Nuts Hexagonal Sleeve Nut Standoff M10 Threaded Fasteners, from amazon.com, P/N B07QG2YSXT; (viii) 200 grams of PLA filament; (ix) 1/4 in. x 2 ft. x 4 ft. Medium Density Fiberboard, from homedepot.com, P/N 1508104; (x) 4X Achromatic Microscope Objective, from amscope.com, P/N A4X-YX-V460; (xi) AC254-100-C - f = 100.0 mm, Ø1" Achromatic Doublet, ARC: 1050 - 1700 nm, from thorlabs.com, P/N AC254-100-C; (xii) AIXPI 4" Ring Light for Laptop with Stand and Clip, from amazon.com, ASIN B08XQCYPJ3; (xiii) Raspberry Pi High Quality HQ Camera - 12MP, from adafruit.com, 4561; (xiv) SM1 Lens Tube, 0.50" Thread Depth and SM1 Lens Tube, 1.00" Thread Depth, from thorlabs.com, P/N SM1L05 and SM1L10; (xv) Raspberry Pi Zero 2 W, from adafruit.com, P/N 5291, (xvi) 30 mm Cage Plate with Ø1" Double Bore, from thorlabs.com, P/N CP35, (xvii) M3/M4/M6 screws and nuts, from mcmaster.com, P/N 90258A187/90258A221/90258A253/90592A085/90592A090/90592A095 *All links and prices accessed January, 2023.

Assembly Instructions

Trackoscope Assembly Instructions

7.	Screw a retaining ring into the lens	8.	Screw an objective lens to the lens	9.	Screw the lens system to the cage
	tube set		tube set		plate

Parts

1. Glue 5 magnets into the base portion (ensure magnet polarity is the same)	2. Glue 5 magnets into the stand portion (ensure magnet polarity is the same and opposite of base magnets)	3. Slide the optics unit into the combined hold
4. Clamp the optics with 2 M4 bolts and nuts	5. Glue an M4 bolt into a knob. (repeat twice for the second knob)	6. Slide 2 M4 nuts into the gaps in the combined hold piece
7. Screw the knobs in slightly till they grasp onto the nut	8. Slide the combined module into the stand and screw in the knobs till the system is secure	9. Snap the ring light into the module

C. Y-Axis Module					
Parts					
- 2x Pillow Block Bearing	- 1x Laser Cut Motor Mount	- 1x Timing Belt			
- 2x Linear Shaft Mount	- 1x Laser Cut Y-Base	- 1x Optics Base			
- 1x Linear Bearing		- 8x M5-10 Pan Head Bolt			
- 1x Lead Screw Nut	- 1x GT2 48T Pulley	- 2x M3-10 Socket Head Bolt			
- 1x NEMA 17 Stepper Motor	- 1x GT2 20T Pulley	- 8x M5 Nut			
- 1x 200mm	Threaded Rod	- 1x 200mm Linear Shaft			
1. Slide the 20T pulley onto stepper motor shaft. Tighten the two set screws on the pulley.	2. Screw the stepper motor onto the laser cut motor mount.	 Glue the motor mount into the laser cut y-axis base. Use super glue or epoxy. Let fully cure. 			
4. Screw a linear shaft mount onto the base with M5 bolts.	5. Slide the linear shaft into the mount and slide a bearing onto the shaft.	6. Screw a linear shaft mount onto the base with M5 bolts.			

7. Screw a pillow block bearing onto the base with M5 bolts.	8. Place the belt on the 42T pulley and slide the threaded rod through the pillow block bearing and the pulley. Spin the lead nut onto the rod.	9. Screw the optics base to the lead screw nut using two M3 nuts and bolts.
10. Attach the pillow block bearing onto the base with M5 nuts and bolts.	11. Attach the optics base to the linear bearing with two M4 nuts.	12. Adjust the motor mount screws to maintain slight tension in the belt.

7. Screw a pillow block bearing onto the base with M5 bolts.	8. Place the belt on the 42T pulley and slide the threaded rod through the pillow block bearing and the pulley. Spin the lead screw nut onto the rod.	9. Slide the XY connector onto the threaded rod and secure onto the lead screw nut with 2 M3 bolts and 2 M3 nuts.
10. Screw a pillow block bearing onto the base with M5 bolts. Tighten the set screws on the pillow block bearings.	11. Adjust the motor mount screws to maintain slight tension in the belt.	

E. Overall Assembly

Parts

